Dramatic Increases in the Lifetime of the Er^{3+} Ion in a Molecular Complex Using a Perfluorinated Imidodiphosphonate Sensitizing Ligand [J. Am. Chem. Soc. 2005, 127, 524-525]. Gaetano Mancino, Andrew J. Ferguson, Andrew Beeby, Nicholas J. Long,* and Tim S. Jones*

We acknowledge that Drs. Zoe Pikramenou and Peter Glover (University of Birmingham) first prepared and provided a sample of the nonfluorinated $\operatorname{Er}(\operatorname{tpip})_{3}$ compound for initial studies, though none of the work detailed in this paper has utilized that sample.

JA069982J
10.1021/ja069982j

Published on Web 12/09/2006

Organocatalytic Direct Michael Reaction of Ketones and Aldehydes with β-Nitrostyrene in Brine [J. Am. Chem. Soc. 2006, 128, 4966-4967]. Nobuyuki Mase, Kaori Watanabe, Hidemi Yoda, Kunihiko Takabe, ${ }^{*}$ Fujie Tanaka, and Carlos F. Barbas III

Page 4967. The following citation should be added as ref 50:
(o) List, B.; Pojarliev, P.; Martin, H. J. Org. Lett. 2001, 3, 2423.

The authors apologize for this oversight.

JA069980Z

10.1021/ja069980z

Published on Web 12/06/2006

Microporous Metal-Organic Frameworks Incorporating 1,4-Benzeneditetrazolate: Syntheses, Structures, and Hydrogen Storage Properties [J. Am. Chem. Soc. 2006, 128, 8904-8913]. Mircea Dincă, Anta F. Yu, and Jeffrey R. Long*

Page 8907. Footnote a in Table 1 should read as follows:
${ }^{a}$ Obtained with graphite-monochromated Mo $\mathrm{K} \alpha$ ($\lambda=$ $0.71073 \AA$ A) radiation for $\mathbf{1 , 3}, \mathbf{4}$, and $\mathbf{5}$, and synchrotron radiation ($\lambda=0.775 \AA$) for $\mathbf{2}$ and $\mathbf{6}$.

Supporting Information Available: An incorrect spatial correction file was used for the X -ray detector at the Advanced Light Source of Lawrence Berkeley National Laboratory. This caused systematic errors in the lattice parameters and peak prediction and resulted in poor integration and loss of highangle data for compounds $\mathbf{2}$ and $\mathbf{6}$. A reintegration of the X-ray diffraction data for these compounds using the correct spatial correction file provided a more precise refinement of the crystal structures. Updated CIF files have therefore been submitted for compounds 2 and $\mathbf{6}$. This material is available free of charge via the Internet at http://pubs.acs.org.

JA068019A
10.1021/ja068019a

Published on Web 12/01/2006
Propargyl Glycosides as Stable Glycosyl Donors: Anomeric Activation and Glycoside Syntheses [J. Am. Chem. Soc. 2006, 128, 9620-9621]. Srinivas Hotha* and Sudhir Kashyap

We have now found that the transglycosylation reaction we described does not proceed in the presence of organic bases such as triethyl amine and diisopropylethyl amine. Furthermore, propargyl glycosides do not behave as glycosyl donors in dioxane $\cdot \mathrm{HCl}$ or $\mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{HCl}$. Interestingly, the transglycosylation reaction between the propargyl per- O-benzylated glucoside (4a) and menthol (6a) proceeded with $5 \mathrm{~mol} \%$ of HAuCl_{4} in acetonitrile at $60{ }^{\circ} \mathrm{C}$, giving 45% of lactol 5a and 30% of menthyl glucoside $\mathbf{5 b}$.

The authors thank the reader who suggested these experiments.

JA067885K

10.1021/ja067885k

Published on Web 12/08/2006

An OFF-OFF-ON Fluorescence Sensor for Metal Ions

 in Stepwise Complex Formation of 2,3,5,6-Tetrakis(2pyridyl)pyrazine with Metal lons [J. Am. Chem. Soc. 2006, 128, 15976-15977]. Junpei Yuasa and Shunichi Fukuzumi*Page 15977. Equation 2 is corrected to
$\left(A-A_{0}\right)=\left(A_{\infty}-A_{0}\right) \times$
(or $I) \quad\left(\right.$ or $\left.I_{\infty}\right)$
$\frac{-K\left[\mathrm{M}^{n+}\right]+\sqrt{K^{2}\left[\mathrm{M}^{n+}\right]^{2}+(4-K) K[\mathrm{TPPZ}]_{0}\left(2\left[\mathrm{M}^{n+}\right]-[\mathrm{TPPZ}]_{0}\right)}}{(4-K)[\mathrm{TPPZ}]_{0}}$

The same correction is also necessary in Supporting Information S 4 , where the derivation of eq 2 is presented.

The plots of I / I_{∞} and $\Delta A b s / \Delta A b s_{\infty}$ vs [$\left.\mathrm{Sc}^{3+}\right]$ for the titration of TPPZ by Sc ${ }^{3+}$ (Figure 3b,c) were fitted by the corrected form of eq 2. Thus, the formation constant of TPPZ $-\mathrm{Sc}^{3+}[K=(1.4$ $\left.\pm 0.1) \times 10^{2}\right]$ is not changed.

Supporting Information Available: Derivation of eq 2 (S4, corrected). This material is available free of charge via the Internet at http://pubs.acs.org.

JA069981R
10.1021/ja069981r

Published on Web 12/20/2006

